

Synthesis of Multimedia Effects on Literacy Achievements in Children at Risk

Victor van Daal and Jenny Miglis Sandvik

Reading Centre, University of Stavanger NORWAY

EARLY EDUCATION AND TECHNOLOGY FOR CHILDREN

Synthesis of Multimedia Effects on Literacy Achievements in Children at Risk

Victor H.P. van Daal*

Jenny Miglis Sandvik

Netherlands Institute for Advanced Study in the Humanities and Social Sciences

Reading Centre, University of Stavanger, Norway

Presented at EETC 2011, Salt Lake City

*Currently Fellow-in-Residence at Netherlands Institute of Advanced Study

victor.v.daal@uis.no & jenny@sandviks.com

University of Stavanger

The Reading Centre

Summary

- 35 studies were reviewed for effects of multimedia interventions in children at risk of literacy underachievement
 - Embedded multimedia, TV, E-books and CAI
- Large effects were found on:
 - Phonological Awareness
 - Concepts of Print
- Medium effect sizes for:
 - Comprehension
 - Non-word Reading
- No effects for:
 - Vocabulary
 - Reading
 - Alphabetic Knowledge
- Inconclusive:
 - Spelling
 - Syntax
- Overall conclusion: Multimedia literacy-applications can be beneficial to children at risk

The Reading Centre

University of Stavanger 2

Introduction: Redefinition of literacy

- In the old days: ability to read and write.
- Now we have multimedia: integration of text, images and sound, presented electronically/digitally.
- Examples: TV, DVDs, (all sorts of) computer software, electronic books, talking books, internet, video games, smart phone apps, interactive toys, and more.
- Literacy is now: ability to communicate through multimedia.
- Multimedia thought to be more efficient than verbal/written delivery of instruction:
 - Clark & Paivio, 1991
 - NAEYC (National Association for the Education of Young People), 1996:
 - `used appropriately, technology can enhance children's cognitive and social abilities'
 - `computers should be integrated into early childhood practice physically, functionally, and philosophically'

The Reading Centre

Introduction: Theory on multimedia

- Pro
 - Dual coding (visual and auditory) results in enhanced comprehension (Sadoski & Paivio, 2007).
 - Supports 'children of the digital age' (Marsh, 2005).
- Con
 - Use of technology is developmentally inappropriate, cognitive overload (Kirschner, 2002).
 - Teacher resistance to incorporating technology into lessons (Turbill, 2001).
 - It costs a lot, but produces little (Yelland, 2005).
 - Use of technology undermines the very nature of childhood, 'death of childhood' (Buckingham, 2000).
- Overviews: Buckingham, 2000; Lankshear & Knobel, 2003; Stephen & Plowman, 2003.

Introduction: The practice

- Rideout & Hamel, 2006:
 - 1,000 American households with children under age 6 surveyed.
 - in a typical day, 83% use some type of screen media.
 - 27% reports that their children use a computer several times a week or more.
 - 69% felt computers helped their children's learning.
- Therefore, in-depth research on the topic is long overdue.

Review of research (I)

- Kamil, Intractor & Kim (2000) reviewed 350 articles on the effects of multimedia on literacy:
 - only few related to early literacy.
 - multimedia facilitate comprehension through `mental model building'.
 - children who come from language and cultural minority backgrounds can benefit from multimedia.
- Lankshear & Knobel (2003) found only 22 articles focusing on young children:
 - majority of these 22 studies dealt with decoding.
 - effects of technology on early literacy development were 'radically under-researched'.

Review of research (II)

- Burnett (2009) reviewed 22 quantitative and 16 qualitative studies on technology and literacy:
 - technology was used in the same way as traditional print teaching methods.
 - strengths of multimedia were not exploited at all.
 - therefore, effects difficult to ascertain.
- Zucker, Moody & McKenna (2009) looked at effects of Ebooks in 7 randomised trial studies and 20 narrative:
 - small to medium effect sizes for comprehension.
 - effect on decoding could not be assessed (only 2 studies).
 - mixed results in narrative studies: overall positive, but sometimes more time was spent on games than educational content (De Jong & Bus, 2002).

The Reading Centre

Review of research (III - CAI)

- Mainframe computers were too expensive and too slow (Fletcher & Atkinson, 1972; Krendl & Williams, 1990; Slavin, 1991).
- Meta-analytic studies found effect sizes of 0.25 (SE = 0.07), Kulik & Kulik (1991) and 0.16 (SE = 0.08), Ouyang (1993).
- Qualitative studies:
 - Torgesen & Horen (1992): computer should be integrated with teacher-driven curriculum.
 - Van der Leij (1994): concentrating on a specific subskill is more effective.
 - Wise & Olson (1998): talking computers should be combined with PA training.
 - National Reading Panel (2000): talking computers promising (20 studies reviewed).

Review of research (IV - CAI continued)

- Blok, Oostdam, Otter & Overmaat (2002):
 - 45 studies with 75 experimental conditions.
 - overall effect size: 0.254 (SE = 0.056).
 - variance of effect size could be explained by:
 - pretest scores: 34%.
 - language of instruction: 27%, English-medium studies
 0.319 SD more effective than non-English.
 - overall disappointing, especially as in all studies children at risk of literacy underachievement took part.
- Have computers become more effective over the last decade?

Questions of the current study

- 1. Can multimedia facilitate the early literacy development of young children (0-8 years old) at risk of literacy underachievement (e.g., dyslexic children, low-SES children, linguistic/cultural minority children)?
- 2. If so how? Which literacy-related learning outcomes are most influenced by the use of multimedia?
- Work in progress:
- 3. Which multimedia applications are more effective?
- 4. Are there any multimedia application X literacy outcome interactions?
- 5. What works in multimedia? How do parameters of multimedia applications affect effect sizes?

Method: We looked for...

- Quantitative research published in peer-reviewed journals between 2000 and 2010, with children 0-8 years as participants.
- Children at risk for literacy failure.
- Also mainstream children.
- Studies with at least one of the following outcomes: Alphabetic Knowledge, PA, RAN, Writing, Phonological Memory, Reading Readiness, Oral Language, Visual Processing and Concepts of Print (NELP, National Institute for Literacy, 2008).
- Published in English.

Method: How we looked for studies...

- Multimedia and early literacy search terms devised by:
 - Cross-checking reference lists found in most recent meta studies and in results of pilot searches.
 - Consulting reference books:
 - Handbook of Early Literacy Research
 - Handbook of Research on New Literacies
 - International Handbook of Literacy and Technology, Vol II
- Data bases searched:
 - PsychINFO
 - ERIC

Results: Searches (I)

- References for several hundred (!) potential studies were located.
- Abstracts were examined and subsequently 92 studies were downloaded for further inspection.
- Again abstracts reviewed and, if needed, full texts were evaluated: 51 studies complied with the search criteria.
- Sixteen had to be excluded, because one or more relevant statistics were missing.
- Of the 35 remaining, 24 reported on children at risk:
 - 7 studies on second language learners
 - 7 studies on low-SES children
 - 10 studies with underachieving readers
- Applications dealt with:
 - Embedded multimedia in teachers' reading lessons (2)
 - Subtitled video (1)
 - E-books (13)
 - Computer Assisted Instruction (18)

The Reading Centre

Results: Searches (II)

- Altogether we found 325 literacy outcomes.
- Final categorisation:
 - Alphabetic Knowledge
 - Phonological Awareness
 - Rapid Automatic Naming
 - Concepts of Print
 - Vocabulary
 - Comprehension
 - Non-word Reading (decoding)
 - Reading (word recognition)
 - Spelling
 - Syntax
- Majority of studies conducted in English-speaking countries:
 - USA (14), UK (4), Canada (2)
 - Israel (5, Hebrew), Netherlands (10, Dutch)

The Reading Centre

Results: Analysis method

- Comparison groups:
 - children at risk who did not received an intervention, or performed a control task.
 - mainstream children receiving the same intervention as the children at risk (from same studies as at risk children).
 - mainstream children who received literacy-related interventions in studies in which no at risk children participated (unrelated studies).
- Meta-analysis:
 - Cohen's d: difference between mean at pretest and mean at posttest, divided by pooled variance.
 - Small samples: corrections by means of Hedges' g.
 - For every outcome category for which we had at least 4 outcomes a mean effect size, based on the random effects model was computed.
 - Also computed: 95% confidence interval for each effect.
 - See: Borenstein, Hedges, Higgins & Rothstein, 2009).

The Reading Centre

Results: Effect sizes (I)

- Alphabetic Knowledge
 - ES = 0.64 (0.49 0.79, 15 outcomes)
 - in untreated children at risk: ES = 0.89 (0.66 1.13, 6 outcomes)
- Phonological Awareness
 - ES = 0.75 (0.68 0.83, 51 outcomes)
 - in untreated children at risk: ES = 0.15 (15 outcomes)
 - in mainstream children: ES = 0.73 (0.55 in unrelated studies
- Rapid Automatic Naming
 - ES = 0.21 (0.05 0.38, 8 outcomes)
 - in untreated children at risk: ES = 0.41 (6 outcomes)

The Reading Centre

Results: Effect sizes (II)

- Concepts of Print
 - ES = 0.86 (0.61 1.11, 6 outcomes)
 - in mainstream children: ES = 0.46 (0.22 0.70 in 6 unrelated studies)
- Vocabulary
 - ES = 0.68 (0.57 0.80, 28 outcomes)
 - in untreated children at risk: ES = 0.56 (0.40 0.73, 11 outcomes)
- Comprehension
 - ES = 0.52 (-0.27 1.31, 12 outcomes)
 - very few outcomes (3 in each group)

Results: Effect sizes (III)

- Non-word Reading (Decoding)
 - ES = 0.53 (0.39 0.67, 13 outcomes)
 - only 3 outcomes in comparison groups
- Reading (Word recognition)
 - ES = 0.60 (0.52 0.68, 44 outcomes)
 - in untreated children at risk: ES = 0.77 (0.54 1.00, 8 outcomes)
- Spelling
 - ES = 1.11 (0.90 1.32, 5 outcomes)
 - in untreated children at risk similar ES (2 outcomes)
- Syntax
 - As Spelling, few studies, similar effects in untreated children

Discussion (I)

- First study to indicate that literacy-related multimedia applications have a substantial effect on literacy learning outcomes of children at risk.
- Large effects on Phonological Awareness and Concepts of Print.
- Medium effects on Comprehension and Non-word Reading (Decoding).
- Multimedia applications do not have an effect on Alphabetic Knowledge, Vocabulary, and Reading (Word recognition) beyond regular instruction.
- At least overall medium effects found if appropriate control groups were used (not 'do nothing').

The Reading Centre

Discussion (II)

- Effect sizes in current study are substantially larger than in previous studies: Have we learnt to exploit the added value of multimedia applications? Or have things changed with respect to the use of multimedia applications? Or...?
- More replications (in non-English speaking countries) needed.
- Publication bias: exclusion of 16 (!) studies.
- More research needed with respect to Comprehension.

Encore: Delving deeper at CAI

- 17 studies (8 in US, 2 in Canada, 1 in France, 5 in Netherlands, and 1 in Israel)
- 8 of them: multi-componential (Lexia, Waterford, IntelliTools, ABRACADABRA, CET)
- Not included: Troia (2004) and Borman, Benson & Overman 2009) Fast ForWord
- For Fast ForWord see: What Works Clearinghouse, <u>http://ies.ed.gov/ncee/wwc/pdf/</u> <u>WWC_Fast_Forword_092806.pdf</u>

CAI results I

- Alphabetic Knowledge
 - ES = 1.161 (0.64 1.68, 9 studies, 11 outcomes)
 - no control groups used
- Phonological Awareness
 - ES = 0.86 (0.77 0.96, 11 studies, 13 outcomes)
 - in control groups: .14 (0.07-.36, 6 studies, 7 outcomes)
- Rapid Automatic Naming
 - ES = -0.20 (0.00 -0.40, 2 studies/outcomes)
 - in control groups: -.48 (-0.17- -.79, 2 studies, 6 outcomes)

CAI results II

- Concepts of Print
 - ES = 0.30 (0.80 0.19, 3 studies/outcomes)
 - no control groups
- Vocabulary
 - ES = 0.70 (0.85 0.54, 4 studies, 8 outcomes)
 - control groups: -0.38 0.68 (2 studies, 4 outcomes)
- Comprehension
 - ES = 0.50 (0.25 0.75, 4 studies, 6 outcomes)
 - only one study with 4 control groups (ES = .21)

CAI results III

- Non-word Reading (Decoding)
 - ES = 0.57 (0.39 0.76, 5 studies, 8 outcomes)
 - only 2 studies with control groups: ES = 0.87 and 0.06
- Reading (Word recognition)
 - ES = 1.85 (1.30 2.41, 10 studies, 14 outcomes)
 - only 3 studies with 4 control groups (ES: 0.47 and 10.99!!)
- Spelling
 - ES = 1.163 (0.15 2.18, 5 studies, 5 outcomes)
 - only 3 control groups (ES = 0.83, 0.92 and 0.98)
- Syntax
 - No CAI in this area

Conclusion for effectivity of CAI (and E-books)

- Use CAI to train Alphabetic Knowledge and PA (but you can also do that with E-books)
- Give up on RAN
- Use E-books for Concepts of Print
- CAI and E-books can both be used to train Vocabulary, but much more research is needed here
- Too few studies available to be sure about effects on Comprehension
- Decoding can be learnt by both CAI and E-books, but CAI is much more effective on Word recognition
- More studies needed for Spelling and Syntax

